Orbital Stability of Peakons for a Generalization of the Modified Camassa-holm Equation

نویسندگان

  • XIAOCHUAN LIU
  • YUE LIU
  • PETER J. OLVER
  • CHANGZHENG QU
چکیده

The orbital stability of the peaked solitary-wave solutions for a generalization of the modified Camassa-Holm equation with both cubic and quadratic nonlinearities is investigated. The equation is a model of asymptotic shallow-water wave approximations to the incompressible Euler equations. It is also formally integrable in the sense of the existence of a Lax formulation and bi-Hamiltonian structure. It is demonstrated that, when the Camassa-Holm energy counteracts the effect of the modified Camassa-Holm energy, the peakon and periodic peakon solutions are orbitally stable under small perturbations in the energy space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of multipeakons

The Camassa-Holm equation possesses well-known peaked solitary waves that are called peakons. Their orbital stability has been established by Constantin and Strauss in [6]. We prove here the stability of ordered trains of peakons. We also establish a result on the stability of multipeakons.

متن کامل

Stability of the mu-Camassa- Holm Peakons

The μ-Camassa-Holm (μCH) equation is a nonlinear integrable partial differential equation closely related to the Camassa-Holm equation. We prove that the periodic peaked traveling wave solutions (peakons) of the μCH equation are orbitally stable. AMS SUBJECT CLASSIFICATION (2000): 35Q35, 37K45.

متن کامل

Stability of the μ-Camassa-Holm Peakons

The μ-Camassa–Holm (μCH) equation is a nonlinear integrable partial differential equation closely related to the Camassa–Holm equation. We prove that the periodic peaked traveling wave solutions (peakons) of the μCH equation are orbitally stable.

متن کامل

Stability of multi antipeakon-peakons profile

Abstract. The Camassa-Holm equation possesses well-known peaked solitary waves that can travel to both directions. The positive ones travel to the right and are called peakon whereas the negative ones travel to the left and are called antipeakons. Their orbital stability has been established by Constantin and Strauss in [20]. In [28] we have proven the stability of trains of peakons. Here, we c...

متن کامل

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013